

HPRC Applications R&D


@ CHREC-UF

BOF ON HPRC @SC12

UNIVERSITY

Herman Lam

Associate Director, CHREC Associate Prof. of ECE University of Florida

HPRC Applications

Opportune Convergence of:

- Needs: Escalating demands of HPC domains
 - Beyond conventional HPC w.r.t. performance and energy sustainability
- □ Emergence of:
 - High-performance RC devices and productivity tools
- Expanding availability of HPRC systems
- Promising R&D and commercial HPRC apps

Boston University

Molecular dynamics

Convey

- Bioinformatics
- Graph 500 (big data analytics)

IBM (Nallatech)

◆ Altera OpenCL – Barrier options pricing

Maxeler

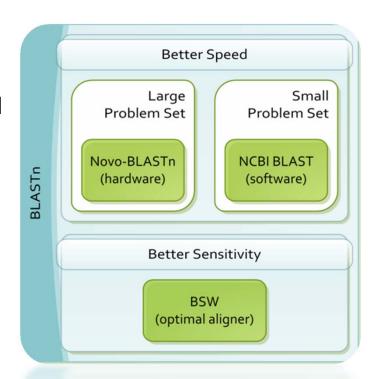
- ◆ J. P. Morgan Financial analytics
- Oil and Gas

Novo-G (GiDEL)

- Monsanto BLAST Toolset
- Veritomyx Isotope Pattern Calculator
- UBS Multi-asset barrier options pricing
- Scalable arch for image segmentation

Pico Computing

Burrows-Wheeler Aligner(BWA)

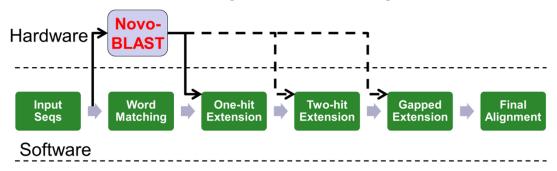

BioRC: CHREC BLAST Toolset

BLAST: Basic Local Alignment Search Tool

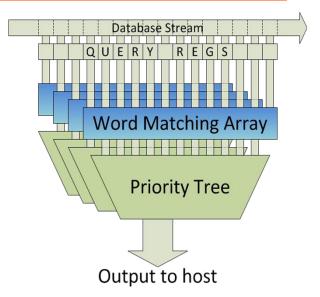
- Like Smith-Waterman (SW)
 - Computes local alignment of two biological sequences
- **Unlike Smith-Waterman**
 - **Much faster**, based on heuristics
 - Generates *non-optimal* alignments
- Currently the most commonly used general sequence alignment tool in bioinformatics

CHREC BLAST Toolset

- **Novo-BLAST**
 - Better speed*
 - Same Sensitivity*
- **BLAST-wrapped SW (BSW)**
 - Better Sensitivity*
 - Same Speed*



BioRC: Novo-BLAST


Goal: Accelerate NCBI BLAST with 100% compatible results

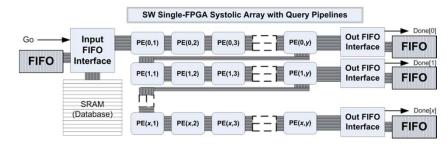
Approach:

- Host software integrated with BLAST
 - Processes queries/extensions in parallel
- Parts of BLAST performed in hardware
 - Word matching & parts of ungapped extension

Result: Measured speedup* of up to 265 v/s pre-compiled blastn from NCBI-BLAST+ toolset (v2.2.24)

Reference: Glycine max, chr 1
Query Set: 5000 from Gmax_cds
Software Version: NCBI BLAST 2.2.24+
Software Baseline: Intel Xeon E5520
Hardware Baseline: 1 Altera Stratix III E260
Config (Novo-BLAST): 4000-length query engine

BLAST Word Size	NCBI BLAST Runtime	Novo-BLAST Speedup
11 default	125	1.81
10	252	3.65
9	585	8.42
8	1358	19.13
7	2246	16.04
6	8782	60.99
5	41384	265.28



BioRC: BLAST-Wraped SW (BSW)

Goal: Achieve Optimal sensitivity with comparable speed to NCBI BLAST & superior speed to FASTA SSEARCH

Approach:

- Smith-Waterman hardware core with software alignment traceback
 - Aligns multiple queries concurrently
- Interface mimics BLAST for ease of deployment and higher familiarity

Result:

- Speedup vs. NCBI BLAST: .28 (word size 11); 1.03 (performance parity at word size 9); 244 (word size 5)
- Speedup of up to 141 vs. FASTA SSEARCH

Reference: Glycine max, chromosome 1

Query Set: 32-5000 of length 240 from Gmax_cds

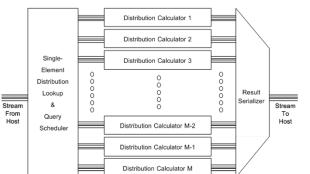
Software Version: SSEARCH 36.3.5a

Software Baseline: Intel Xeon E5620 (one core)

Hardware Baseline: Altera Stratix IV E530 (95%)

Config (BSW): 7x2 pipelines of 240 PEs, 140 MHz

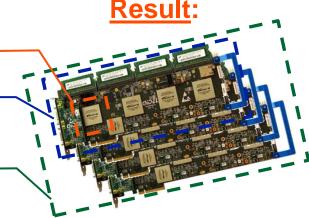
Number of Queries	SSEARCH Runtime	BSW Speedup
32	00:04:51	58.1
64	00:09:16	84.1
128	00:18:00	101.8
256	00:35:29	119.7
512	01:10:25	131.3
5000	11:22:33	141.9


BioRC: Isotope Pattern Calculator (IPC)

Goal: *Increase accuracy* of Protein Identification Algorithms (PIAs)

- Essential for <u>pharmaceutical research</u> & <u>cancer diagnostics</u>
- Existing PIAs has potential to revolutionize accuracy
 - Prohibitive execution times
 - Must accelerate for feasible use

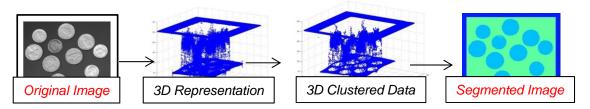
Approach:

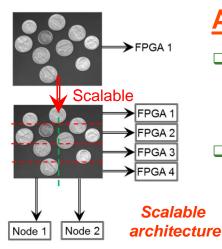

- Accelerate Isotope Pattern Calculator (IPC), a dominant subroutine common in de novo PIAs
- Provide customizable design for general use
- Reconfigurable computing at scale to achieve sustainable supercomputing performance

Between 72 and 566 speedup[†] on a single FPGA

Up to 1259 speedup[†] on a single board (4 FPGAs)

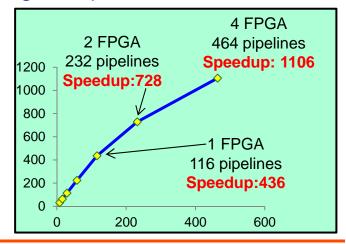
Up to 3340 speedup † on a single node (16 FPGAs)





DspRC: Unsupervised Image Segmentation

Goal: Achieve real-time segmentation for HD (1920x1080p) images



Approach:

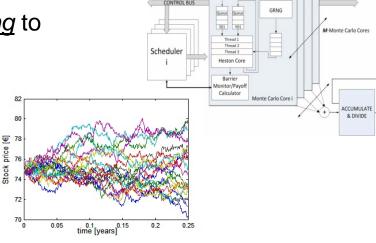
- Dedicate one pipeline per pixel:
 - Pixels cluster independently
 - Replicate pipelines to efficiently utilize FPGA resources
- Scalable architecture
 - Divide input image among multiple boards

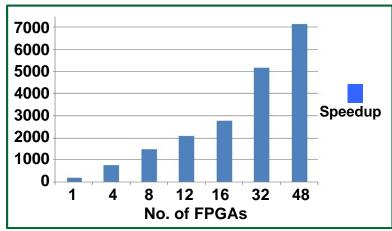
Result: Measured speedup of 1106* on PROCStar III board (4 Stratix III E260 FPGAs @150 MHz)

^{*} Speedup measured vs. optimized C code running on an Intel Xeon E5520 core

FinRC: Multi-asset Barrier Options Simulation

Goal: Use of reconfigurable supercomputing to enable business-relevant financial apps


 Accelerate <u>multi-asset barrier options pricing</u> to meet rigorous time constraint


Approach:

- Simulate multi-asset barrier options under Heston volatility dynamics with a Monte Carlo (MC) process
- Architecture consists of:
 - Parallel MC cores, each capable of simulating multiple MC paths
 - Customizable payoff kernel, flexibility to price different types of contracts

Result: Measured speedup of 350 on one FPGA and 7134 on 48 FPGA

w.r.t. SSE2 optimized code using one E5-2687 core

RC Middleware

Motivation: Lack of standards between FPGA platforms limits app & tool portability, and productivity

 Major factor in limited acceptance of FPGAs in HPC community

Approach: RC Middleware (RCMW)
provides uniform, standardized interfaces
and programming model across
heterogeneous platforms

Portability

- Abstracts away platform-specific interfaces (hardware & software)
- Enables app & tool portability across6 platforms from four vendors
- Modest overhead
 - <1% area, <10% performance</p>

Application Services

RC Middleware

Platform Abstraction

Productivity

- RCMW toolset handles application resource mapping and translation
- Productivity improvement:
 - Hardware & software interfaces simplify HPC app development

Conclusions

Opportune Convergence of:

- □ *Escalating demands* of key HPC domains
- Emergence of high-performance RC devices and productivity tools
- Expanding availability of HPRC systems
- Promising R&D and commercial HPRC apps

And an opportune time for High-Performance Reconfigurable Computing

> For more details on apps and middleware, Come see us at the CHREC booth #2405

